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1 INTRODUCTION

In this project, we consider the problem of wave scattering, commonly encountered in acoustics and electromag-

netism. In the case of time harmonic behaviour of the incident waves, the physics of scattering can be studied using

the Helmholtz equation

(∆+k2u(x)) = f (x) (1.1)

where k is the wave number. Well-known formulations (Combined Field Integral Equations (CFIE)) exist for solving

the scattering problem in an unbounded domain using boundary element methods, however one encounters a

classical problem, when considering scattering from a bodyΩ in a half space (i.e. having an infinite wall at y = 0

with a certain boundary condition (fig. 1.1)). Two major approaches exist which avoid discretization of the boundary,

each having their own pros and cons. In this project, we consider the implementation of a hybrid method derived

from these two principal approaches [2], in the case of wave scattering in a 2D half space.

We begin by implementing a 2D Helmholtz equation solver, based on integral equations and a CFIE formulation.
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Figure 1.1: Half space scattering schematic: Incident waves ui nc are scattered from a bodyΩ in a half space y > 0.

(credits: CS598APK notes)

2 2D HELMHOLTZ EQUATION: GREENS FUNCTION, IE FORMULATION,

VALIDATION AND ILLUSTRATION

Consider the Helmholtz equation for a unit impulse source located at x0 in an unbounded domain

(
∆+k2)gk (x) = δ (x −x0) (2.1)

In 2D, the corresponding Greens function satisfying the Sommerfeld radiation condition is given by

g (x, x0) = i

4
H (1)

0 (k|x −x0|) (2.2)

where H (1)
0 denotes the zeroth-order Hankel function of the first kind. Accordingly the single and double layer

potentials for a certain charge density σy on a boundary are defined as:

S(x) =
∫

g (x, y)σ(y)d y

D(x) =
∫

ny
∂

∂y
g (x, y)σ(y)d y

(2.3)

We first consider the case of scattering of incident waves ui nc from a closed surface in an unbounded domain.

Throughout this work, we will assume the body is ‘sound soft’ i.e a homogeneous Dirichlet condition utot =
ui nc +uscat = 0. We consider a standard CFIE representation as the solution for scattered field:

u(x) = D(x, y)σ(y)− iαS(x, y)σy (2.4)

where we set α= k. Enforcing boundary conditions on the body surface we get (using jump relations):

σ

2
+Dσ− iαSσ=−ui nc (2.5)
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a linear system, which is then solved for the source density using GMRES.

Since the layer potentials are singular when target and source coincide, for robust and accurate numerical

quadrature on the surface using panels, we consider QBX [1]. In simple terms, we perform a local expansion (using

Grafs addition theorem) of the singular kernel about a centre away from the source point fig. 2.1, and leverage the

smoothness of the kernel in kernel evaluation. When the expansion centre distance from the panel r is set as half of

Figure 2.1: Illustration of Quadrature by Expansion (QBX) along with Grafs addition theorem (credits: CS598APK

notes).

the panel length h, QBX converges with a controlled precision:

ε= hp+1 + (0.25)q (2.6)

where p and q are the expansion order and number of Gaussian quadrature nodes on the panel, respectively.

Throughout our study, we consider the same cross shaped body parametrized as:

x(t ) = 1.1+ (1+0.2cos(4t ))cos(t )

y(t ) = 2.0+ (1+0.2cos(4t ))sin(t )
(2.7)

For validation of the implementation, we consider the case of a monopole placed inside the body. The acoustic

field induced at the body surface is used as a boundary condition for solving the external scattering problem. From

the uniqueness of solution based on boundary values, the numerical solution should coincide with the analytical

solution produced by the point source. Figure 2.2 shows the error plotted on a log scale in the domain (details

in caption) and convergence of the solver with panel length. We recover the expected order of convergence as

discussed above.

Figure 2.3 shows an illustration of the incident field from a source placed outside the body being scattered by

the sound soft body.
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Figure 2.2: Convergence of IE solver for a monopole (red point) source placed in the body. (a) Error plotted on log

scale for 30 panels, expansion order=4 and panel quadrature order=8. (b) Relative error convergence (L2 norm) for

panel length h, evaluated at random points (green points) in the domain.

Figure 2.3: Scattering illustration: (a) Incident field (b) Total field after scattering from the body.

3 HALF SPACE PROBLEM

We now turn towards our main goal of developing the Greens function for a half space. For generic reasons, we

assume the boundary condition on the wall (y = 0) to be of an impedance type i.e.

∂utot

∂y
− iαutot = 0 (3.1)

We then discuss the two principal approaches to tackle this problem, followed by the hybrid method.
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3.1 SOMMERFELD INTEGRAL REPRESENTATION

Consider the Greens function for the Helmholtz equation for an unbounded domain, with the source located at

(x0, y0). The same function can be written as an integral of the Fourier modes:

gk (x , x0) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
e i(λx (x−x0)+λy (y−y0))

λ2
x +λ2

y −k2
dλx dλy (3.2)

where λx and λy are the Fourier mode wavenumbers along x and y respectively. Integrating in λy using contour

integration (a technique in complex analysis), the expansion can be written in terms of plane wave modes known as

the Sommerfeld integral form as:

gk (x , x0) = 1

4π

∫ ∞

−∞
e−

p
λ2−k2|y−y0|

p
λ2 −k2

e iλ(x−x0)dλ (3.3)

where λ(t) = t − i tanh(t) for t ∈ (−∞,∞). Similar to the above form, the Sommerfeld integral representation for

single layer potential can be written as:

u(x) = 1

4π

∫ ∞

−∞
e−

p
λ2−k2 y

p
λ2 −k2

e iλx σ̂(λ)dλ (3.4)

Using the above form and enforcing the impedance boundary condition of eq. (3.1) for all modes, the source density

Figure 3.1: Convergence of the Sommerfeld integral for 3 different target locations (details in the code) for varying

source distance from the wall. As can been seen, the convergence becomes worse as the source approaches the wall.

in the modal form can be written as:

σ̂(λ) = e−
p
λ2−k2 y0 e−iλx0

(p
λ2 −k2 + iαp
λ2 −k2 − iα

)
(3.5)
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Substituting this back in the single layer potential yields:

u(x) = 1

4π

∫ ∞

−∞
e−

p
λ2−k2(y+y0)
p
λ2 −k2

e iλ(x−x0)

(p
λ2 −k2 + iαp
λ2 −k2 − iα

)
dλ (3.6)

The above expression combined with the free space Greens function gives the full impedance Greens function for a

half space, with a wall having impedance condition. However the above expression comes with two major issues.

First, the term e−
p
λ2−k2(y+y0) converges slowly if the target and the source are close to the wall (fig. 3.1). Second, the

term e iλ(x−x0) becomes large and oscillatory for larger distances between source and target, a fact common and

unavoidable in Sommerfeld type representations. In short the representation is apt for far field interactions along y.

Next we discuss the second major approach, which may help us to resolve this issue.

3.2 METHOD OF IMAGES

The method of images along with symmetry is well known in classical mathematics for application of homogeneous

boundary conditions. Consider the case of a source placed at (x0, y0) and a wall at y = 0. A homogeneous Dirichlet

condition can be imposed at the wall by placing an equal and opposite source at (x0,−y0), while a homogeneous

Nuemann condition can be imposed by placing the same source at (x0,−y0). Similarly, for an impedance condition

of eq. (3.1), one needs to place the same charge at (x0, y0) and a line of charges starting from the above location till

y =−∞ (see [3] for details).

Accordingly, for a source at (x0, y0), let us assume the scattered field takes the form:

u(x) =
∫ ∞

0
gk

(
x , x0 −

(
2y0 +η

)
ŷ
)
τ(η)dη (3.7)

Writing the above expression in Sommerfeld integral type form:

u(x) = 1

4π

∫ ∞

0

∫ ∞

−∞
e−

p
λ2−k2(y+y0+η)
p
λ2 −k2

e iλ(x−x0)τ(η)dλdη (3.8)

Then enforcing the boundary condition of eq. (3.1), and simplifying the expression using some Laplace transform

identities (see [2] for details), the scattered field can be written as:

u(x) = gk
(
x , x0 −2y0 ŷ

)+2iα
∫ ∞

0
gk

(
x , x0 −

(
2y0 +η

)
ŷ
)

e iαηdη (3.9)

In the above expression, the source density is of oscillatory nature while the decay in the integral comes only from

the Greens function. To overcome this, one can complexify η using contour integration and rewrite the expression

as:

u(x) = gk
(
x , x0 −2y0 ŷ

)−2α
∫ ∞

0
gk

(
x , x0 −

(
2y0 + iη

)
ŷ
)

e−αηdη (3.10)

The above expression now shows exponential decay, thus making the integral evaluation easier. However as a side

effect now, the Greens function part of the integrand lies in the complex plane and shows spatial dependence of

the singularity, relative to the target and source locations (fig. 3.2). This makes use of a generic quadrature scheme

problematic.

Next, we demonstrate a hybrid representation, combining the pros and eliminating the cons of both the methods.
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Figure 3.2: For k = 1 and source location (1, 0.01), the plot shows the behavior of the singularity of and its dependence

on the lateral location of the source and target.

3.3 A HYBRID APPROACH

Consider the image base representation of eq. (3.9). Now splitting the integral into near and far field components:

u(x) = gk
(
x , x0 −2y0 ŷ

)
+2iα

(∫ C
0 gk

(
x , x0 −

(
2y0 −η

)
ŷ
)

e iαηdη+∫ ∞
C gk

(
x , x0 −

(
2y0 −η

)
ŷ
)

e iαηdη
) (3.11)

where C is parameter of choosing (chosen = 1, based on [2]). Now the third term on RHS or the far field form has

Figure 3.3: For a source at (0, 2), k = 10.4, α = 2.04 and wall at y=0, convergence of (a) traditional Sommerfeld

integral (b) far field Sommerfeld integral, for varying target locations.

closed-form Sommerfeld integral representation:

∫ ∞

C
gk

(
x , x0 −2y0 ŷ −ηŷ

)
e iαηdη= 1

4π

∫ ∞

−∞
e−

p
λ2−k2(y+y0)
p
λ2 −k2

e−(
p
λ2−k2−iα)c

p
λ2 −k2 − iα

e iλ(x−x0)dλ (3.12)
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The above expression has a term e−(
p
λ2−k2−iα)C , which decays exponentially irrespective of the location of the target

or source, thus making the integral converge rapidly. Figure 3.3 demonstrates this fact, with the far field Sommerfeld

integral converging rapidly when compared to the traditional Sommerfeld integral. The second term on the RHS

is then integrated numerically on dyadic intervals. Further details on quadrature can be found in [2]. Figure 3.4

Figure 3.4: For a source at (0, 5), k = 10.4, α= 2.04 and wall at y=0, (a) and (b) illustrate the incident and scattered

Greens function, respectively from [2] while (c) and (d) illustrate the corresponding fields from our implementation.

We see qualitative agreement between the two.

demonstrates the comparison for the scattered hybrid Greens function, between [2] and our own implementation,

and shows qualitative agreement between the two.

We next insert this modified Greens function in our Helmholtz scattering IE solver and observe the scattered

fields from the body in a half space, with waves incident from a source at (-2, 2). Figure 3.5 illustrates the comparison

between scattered fields from our implementation and that of [2]. Near smaller horizontal target–source separation

and near the body, we see qualitative agreement. For larger lateral separation, we see large oscillating values which

we believe is due to the e iλ(x−x0) term. Figure 3.6 shows the convergence of the scattered field at 3 random points

near the scatterer, which shows the expected order.
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Figure 3.5: For a source at (-2, 2), k = 10.4, α= 2.04 and wall at y=0, (a), (b) and (d) illustrate the incident, scattered

and total fields from our implementation. (c) Illustration of the scattered field from [2]. We see qualitative agreement

between the two.

4 CONCLUSION

To approach the acoustic scattering problem, an IE solver based on CFIE representation for Helmholtz equation

using QBX for layer potential quadrature was successfully implemented and validated in Python. Two major

approaches of developing a half space Greens function, Sommerfeld integral and method of images were discussed,

along with their pros and cons. Finally, a hybrid approach, combining the two was implemented for scattering in

a half space and results were compared with those of [2]. Qualitative agreement was observed between the two.

What remains further is reducing the complexity of the implementation using FMM for image charges, as well as

understand how FMM works in the case of QBX.
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Figure 3.6: For a source at (-2, 2), k = 10.4, α= 2.04 and wall at y=0, convergence at three random points (plotted in

fig. 3.5).
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