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Abstract

We solved the incompressible unsteady Navier Stokes
(UNS) equations using the spectral element method.
We implemented the Orszag-Kells algorithm to solve
the UNS equations on a rectangular cavity with var-
ious boundary conditions(BCs). The code was vali-
dated against the standard steady Lid-Driven cavity
problem. Other BCs such as transient Dirichlet BC
(oscillatory LDC) and Neumann BC (flow between
two parallel plates) were then implemented.

Problem description

The unsteady Navier Stokes (UNS) equations govern the
dynamics of (incompressible) fluid flow. The dimensionless
form is given below:

∇.u = 0
∂u
∂t

+ u.∇u = −∇p + 1
Re
∇2u

where Re is the Reynolds number. We solve the above
equations on a rectangular domain Ω = [0, Lx]× [0, Ly]

Numerical method
To solve the UNS equations, we use spectral element
method with one element having PN − PN−2 basis for
velocity-pressure on GLL-GL nodes with BDF3/EXT3 as
time stepper for temporal evolution of the system. We
implement the Orszag-Kells algorithm which decouples
the non-linear system of equations as follows. The first
step involves calculating an intermediate velocity field ũ:

ũ = − 1
β0

k∑
j=1

βjun−j + ∆t
β0

k∑
j=1

αj(f − u.∇u)n−j

The second step called the pressure projection step projects
ũ onto a divergence free space ˜̃u using a decoupled pressure
Poisson equation solution by neglecting the viscous term.

∇2φ = ∇.ũ, ∇φ.n̂ = ũ.n̂

˜̃u = ũ−∇φ, pn = β0

∆t
φ

Numerical Method (contd.)
The final step involves solving the Helmholtz equation in-
volving the viscous terms and enforcing BCs.

un − ∆t
β0Re

∇2un = ˜̃u

The entire algorithm is optimized for speed using Fast
Diagonalization method and the advection component is
over-integrated to ensure stability at high Re.

Results: Steady Dirichlet BC

The LDC problem involves flow in a cavity (Lx = Ly = 1)
with the top lid moving with a constant velocity. This flow
at Re = 400 gives rise to interesting flow physics with a ma-
jor vortex near the center of the cavity and the secondary
vortices near the bottom wall.

Figure 1: Contours of velocity magnitude for Re=400

Validation : LDC
We validated the code against the LDC problem. The
results were compared against the data by Ghia et.al.. We
see a good match for Re = 100 and 400.
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Figure 2: Validation of center line horizontal velocities at various Re

Convergence : LDC
To test the temporal and spatial convergence, we use the
kinetic energy in the cavity as the parameter to test conver-
gence against the finest solution (p=100, ∆t = 2.5×10−4).

Figure 3: Spatial and Temporal convergence (Re = 100)

Results: Transient Dirichlet BC
In order to use a transient Dirichlet BC, we modified the
velocity of the top lid to have the form u(t) = umax cos(ωt).
This introduces another non-dimensional number called
the Stokes number (St = ωu2

max/ν). For this BC, we see
a time periodic solution with time period equal to that of
the oscillation (T ). Further, the flow is symmetric (about
the axis perpendicular to the transient boundary) for times
t and t + 0.5T .
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Figure 4: Center line horizontal velocities for Re = 100 and St = 105

Results: Neumann BC
To implement the Neumann BC, we studied the flow be-
tween two parallel plates. We initialized the left boundary
with a uniform velocity and gave outflow conditions (Neu-
mann) at the right boundary. Since flow between plates
require a pressure gradient, a homogeneous Dirichlet refer-
ence pressure was applied at the right boundary.

Figure 5: Horizontal velocity contours for Re = 10 with Lx = 2.5,
Ly = 1.0

From the contours we can see that the boundary layers
start developing on both the walls and eventually reach
a "fully-developed" state. The line plots below show the
radial velocity profiles at various stages of the developing
flow. We see that the flow is fully developed at X = 0.3.
Further we see that the fully developed profile is parabolic
and is symmetric about the center which matches the the-
oretical predictions.

0.00 0.05 0.10 0.15 0.20 0.25
Y

0.0

0.2

0.4

0.6

0.8

1.0

U
(Y

)

X = 0.1

X = 0.15

X = 0.2

X = 0.3

X = 0.5

Figure 6: Horizontal Velocity profiles at various stages of developing
flow for Re = 10


